Comparing Castelnuovo-mumford Regularity and Extended Degree: the Borderline Cases
نویسنده
چکیده
Castelnuovo-Mumford regularity and any extended degree function can be thought of as complexity measures for the structure of finitely generated graded modules. A recent result of Doering, Gunston, Vasconcelos shows that both can be compared in case of a graded algebra. We extend this result to modules and analyze when the estimate is in fact an equality. A complete classification is obtained if we choose as extended degree the homological or the smallest extended degree. The corresponding algebras are characterized in three ways: by relations among the algebra generators, by using generic initial ideals, and by their Hilbert series.
منابع مشابه
Castelnuovo-Mumford regularity of products of monomial ideals
Let $R=k[x_1,x_2,cdots, x_N]$ be a polynomial ring over a field $k$. We prove that for any positive integers $m, n$, $text{reg}(I^mJ^nK)leq mtext{reg}(I)+ntext{reg}(J)+text{reg}(K)$ if $I, J, Ksubseteq R$ are three monomial complete intersections ($I$, $J$, $K$ are not necessarily proper ideals of the polynomial ring $R$), and $I, J$ are of the form $(x_{i_1}^{a_1}, x_{i_2}^{a_2}, cdots, x_{i_l...
متن کاملCastelnuovo-Mumford regularity of canonical and deficiency modules
We give two kinds of bounds for the Castelnuovo-Mumford regularity of the canonical module and the deficiency modules of a ring, respectively in terms of the homological degree and the Castelnuovo-Mumford regularity of the original ring.
متن کاملBounding cochordal cover number of graphs via vertex stretching
It is shown that when a special vertex stretching is applied to a graph, the cochordal cover number of the graph increases exactly by one, as it happens to its induced matching number and (Castelnuovo-Mumford) regularity. As a consequence, it is shown that the induced matching number and cochordal cover number of a special vertex stretching of a graph G are equal provided G is well-covered bipa...
متن کاملCastelnuovo-mumford Regularity of Ext Modules and Homological Degree
Bounds for the Castelnuovo-Mumford regularity of Ext modules, over a polynomial ring over a field, are given in terms of the initial degrees, Castelnuovo-Mumford regularities and number of generators of the two graded modules involved. These general bounds are refined in the case the second module is the ring. Other estimates, for instance on the size of graded pieces of these modules, are give...
متن کاملAn upper bound for the regularity of powers of edge ideals
A recent result due to Ha and Van Tuyl proved that the Castelnuovo-Mumford regularity of the quotient ring $R/I(G)$ is at most matching number of $G$, denoted by match$(G)$. In this paper, we provide a generalization of this result for powers of edge ideals. More precisely, we show that for every graph $G$ and every $sgeq 1$, $${rm reg}( R/ I(G)^{s})leq (2s-1) |E(G)|^{s-1} {rm ma...
متن کامل